Why Are Plants Green? The Answer Might Work on Any Planet

 wired.com  08/02/2020 12:00:00   Rodrigo P�rez Ortega

From large trees in the Amazon jungle to houseplants to seaweed in the ocean, green is the color that reigns over the plant kingdom. Why green, and not blue or magenta or gray? The simple answer is that although plants absorb almost all the photons in the red and blue regions of the light spectrum, they absorb only about 90 percent of the green photons. If they absorbed more, they would look black to our eyes. Plants are green because the small amount of light they reflect is that color.

Original story reprinted with permission from Quanta Magazine, an editorially independent publication of the Simons Foundation whose mission is to enhance public understanding of science by covering research developments and trends in mathematics and the physical and lifesciences.

But that seems unsatisfyingly wasteful because most of the energy that the sun radiates is in the green part of the spectrum. When pressed to explain further, biologists have sometimes suggested that the green light might be too powerful for plants to use without harm, but the reason why hasnt been clear. Even after decades of molecular research on the light-harvesting machinery in plants, scientists could not establish a detailed rationale for plants color.

Recently, however, in the pages of Science, scientists finally provided a more complete answer. They built a model to explain why the photosynthetic machinery of plants wastes green light. What they did not expect was that their model would also explain the colors of other photosynthetic forms of life too. Their findings point to an evolutionary principle governing light-harvesting organisms that might apply throughout the universe. They also offer a lesson thatat least sometimesevolution cares less about making biological systems efficient than about keeping them stable.

The mystery of the color of plants is one that Nathaniel Gabor, a physicist at the University of California, Riverside, stumbled into years ago while completing his doctorate. Extrapolating from his work on light absorption by carbon nanotubes, he started thinking of what the ideal solar collector would look like, one that absorbed the peak energy from the solar spectrum. You should have this narrow device getting the most power to green light, he said. And then it immediately occurred to me that plants are doing the opposite: Theyre spitting out green light.

Nathaniel Gabor, a physicist at the University of California, Riverside, and his colleagues have developed a model for light collection in photosynthetic organisms that optimizes the reduction of noise over efficiency.Courtesy of UC Riverside

In 2016, Gabor and his colleagues modeled the best conditions for a photoelectric cell that regulates energy flow. But to learn why plants reflect green light, Gabor and a team that included Richard Cogdell, a botanist at the University of Glasgow, looked more closely at what happens during photosynthesis as a problem in network theory.

The first step of photosynthesis happens in a light-harvesting complex, a mesh of proteins in which pigments are embedded, forming an antenna. The pigmentschlorophylls, in green plantsabsorb light and transfer the energy to a reaction center, where the production of chemical energy for the cells use is initiated. The efficiency of this quantum mechanical first stage of photosynthesis is nearly perfectalmost all the absorbed light is converted into electrons the system can use.

But this antenna complex inside cells is constantly moving. Its like Jell-O, Gabor said. Those movements affect how the energy flows through the pigments and bring noise and inefficiency into the system. Quick fluctuations in the intensity of light falling on plantsfrom changes in the amount of shade, for examplealso make the input noisy. For the cell, a steady input of electrical energy coupled to a steady output of chemical energy is best: Too few electrons reaching the reaction center can cause an energy failure, while too much energy will cause free radicals and all sorts of overcharging effects that damage tissues, Gabor said.

Gabor and his team developed a model for the light-harvesting systems of plants and applied it to the solar spectrum measured below a canopy of leaves. Their work made it clear why what works for nanotube solar cells doesnt work for plants: It might be highly efficient to specialize in collecting just the peak energy in green light, but that would be detrimental for plants because, when the sunlight flickered, the noise from the input signal would fluctuate too wildly for the complex to regulate the energy flow.

Illustration: Samuel Velasco/Quanta Magazine
« Go back