AI is helping seismologists detect earthquakes they’d otherwise miss  2/14/2018 7:00:04 PM   James Vincent
Collecting data the old-fashioned way from a seismograph in Indonesia.
Photo by Barcroft Media via Getty Images

Oklahoma never used to be known for its earthquakes. Before 2009, the state had roughly two quakes of magnitude three and above each year. (Magnitude three is when things shake on the shelf, but before houses start getting damaged.) In 2015, this tally rocketed to more than 900, though it’s calmed since, falling to 304 last year.

This sudden increase is thought to be caused by the disposal of wastewater by the state’s booming fracking industry, and it’s caught seismologists off-guard. As a historically quake-free area, Oklahoma doesn’t have enough equipment to detect and locate all of these quakes, making it hard to investigate their root cause. “There are no major faults in Oklahoma so it’s just not something we would expect,” Thibaut Perol, a deep learning researcher who’s worked on this problem, tells The Verge. “And to understand what’s happening, we need a big, big catalogue of earthquakes.”

The solution proposed by Perol and his colleagues from Harvard University’s engineering and earth sciences departments is to use artificial intelligence to amplify the sensitivity of the state’s earthquake detectors, otherwise known as seismographs. In a paper published today in the journal Science Advances, they show how effective this technique is — capable of detecting 17 times more earthquakes than older methods in a fraction of the time.

The method is similar to the voice detection software used by digital assistants like Alexa and Siri, explains Perol. It’s all about uncovering the signal hidden in the noise. With Alexa, that means listening out for your voice commands while ignoring the background sound of your home. And for seismographs, it means cancelling out the normal geological rumblings of the Earth (what’s known as “ambient seismic noise”) to spot the earthquakes that might be very small or far away. This way, scientists in Oklahoma can get more of the data they have.

To achieve this, Perol and his colleagues trained a convolutional neural network to recognize background noise, feeding it data from seismically quiet areas, like pre-fracking era Oklahoma and the relative geological dead-zone of Wisconsin. (The state has only really had one significant earthquake, and that was in 1947.) As with all neural networks, the software examines this input and learns to pick out common patterns. Once it knows what ambient rumblings look like, it can remove these from the data, revealing the tiny earthquakes that had previously been hidden by the noise. The neural network was even able to identify the rough whereabouts of individual quakes by matching the patterns they created with historical data where the quake’s location was known.

“With this method we are able to detect earthquakes of magnitude zero or minus one, and these are signals you wouldn’t be able to see with a human eye,” says Perol.

If this neural network, dubbed ConvNetQuake, is widely applied, says Perol, it’ll help seismologists in Oklahoma investigate the exact cause of the state’s earthquakes. There’s even some hope that it could predict earthquakes before they occur. This could be done by looking for patterns in the data; for example, finding times when a number of small earthquakes happen in quick succession leading up to a bigger, potentially damaging quake.

The idea of using AI to predict — not just detect — earthquakes is an exciting one, but it’s not something that the whole seismologist community is confident about. (You can watch the video below for more info.) In Oklahoma at least, prediction isn’t as important as detection. But with the help of Perol and his colleagues’ neural network, this important work could get a boost.

« Go back